

1. Introduction

In this paper we continue our investigation [DRS, Sametl,

Samst2, Samet3, Samet4, Samet5] of region representation by

use of quadtrees [Klinger]. This is an important question

in applications such as image processing, computer graphics,

and cartography (see (DRS] for a brief review of represent-

ations currently in use). In this paper we present an algo-

rithm for obtaining a raster (i.e., row-by-row) representa-

tion given the quadtree representation of a binary image.

Such conversion algorithms (e.g., [DRS, Sametl, Samet4, Samet5l)

are useful because each representation is well suited for

particular operations on the image. The quadtree is a compact

hierarchical representation which, depending on the nature of

the image, saves space as well as facilitates operations

such as search. The algorithm described here is important

because it enables a quadtree to be output by raster-like

display devices without requiring space in excess of one row

of pixels.

In the remainder of this section we briefly define the

representations used. Sections 2-5 contain the algorithm and

an analysis of its execution time. We also include a formal

presentation of the algorithm using a variant of ALGOL 60

[Naur] as well as motivations for its various steps.

We assume that the given image is a 2n by 2n array of

unit square "pixels". The quadtree is an approach to image

representation based on successive subdivision of the array

into quadrants. In essence, we repeatedly subdivide the array

into quadrants, subquadrants,... until we obtain blocks

(possibly single pixels) which consist entirely of l's or O's.

This process is represented by a tree of out-degree 4 in which

the root node represents the entire array, the four sons of

the root node represent the quadrants, and the terminal nodes

correspond to those blocks of the array for which no further

subdivision is necessary. For example, Figure lb is a block

decomposition of the region in Figure la while Figure ic is

the corresponding quadtree. In general, BLACK and WHITE square

nodes represent blocks consisting entirely of l's and O's

respectively. Circular nodes, also termed GRAY nodes, denote

non-terminal nodes.

-1

2. Definitions and Notation

Let each node in a quadtree be stored as a record con-

taining six fields. The first five fields contain pointers

to the node's father and its four sons, labeled NW, NE, SE,

and SW. Given a node P and a son I, these fields are refer-

enced as FATHER(P) and SON(P,I) respectively. At times it is

useful to use the function SONTYPE(P) where SONTYPE(P)=Q iff

SON(FATHER(P),Q)-P. The sixth field, named NODETYPE, describes

the contents of the block of the image which the node repre-

sents--i.e., BLACK, WHITE, or GRAY.

The four sides of a node's block are called its N, E, S,

and W sides. They are also termed its boundaries. The predi-

cate ADJ and the function REFLECT facilitate the expression of

operations involving a block's quadrants and boundaries.

ADJ(B,I) is true if and only if quadrant I is adjacent to

boundary B of the node's block, e.g., ADJ(W,NW) is true.

REFLECT(B,I) yields the quadrant which is adjacent to quadrant

I along boundary B of the block represented by I; e.g.,

REFLECT(N,SW)=NW, REFLECT (E,SW)-SE, REFLECT(S,SW)=NW, and

REFLECT(W,SW)=SE. Figure 2 shows the relationship between the

quadrants of a node and its boundaries.

Given a quadtree corresponding to a 2n by 2n array we say

that the root is at level n, and that a node at level i is at

a distance of n-i from the root of the tree. In other words,

for a node at level i, we must ascend n-i FATHER links to

reach the root of the tree. Note that the farthest node from

the root of the tree is at level k0. A node at level 0 cor-

responds to a single pixel in the image. Also we say that a

block is of size 2S if it is found at level S in the tree.

I

3. Algorithm

The quadtree-to-raster algorithm traverses the quadtree in

a row by row order. For each row in the image, every BLACK

or WHITE node corresponding to a block which intersects it

is visited from left to right (e.g., for pixels 1-8 in the

first row of Figure la, node A of Figure lc is visited first

followed by nodes B, C, D, and E). Each BLACK and WHITE node

at level L in the tree is visited 2L times (i.e., its height

in pixels). The result of each such visit is that a run of

length 2L is output (e.g., a run of length 2 for node A of

Figure lb).

The main procedure is called RASTEROUTPUT and it is in-

voked with a pointer to the root of the quadtree representing

the image and an integer corresponding to the log of the dia-

meter of the image (e.g., n for a 2n by 2n image array).

RASTEROUTPUT must first find the NW-most BLACK or WHITE node

in the image, say P at level L (e.g., node A corresponding to

block A in Figure Ib). Once this is done, it controls the ex-

ploration of all of the adjacent BLACK and WHITE nodes in the

eastern direction along each of the 2L rows corresponding to P.

When all of the rows of P have been output, the process is

repeated for P's westernmost southern neighbor (e.g., the rows

corresponding to node H are processed after being done with the

rows associated with node A in Figure 1c). Procedure OUTROW

is responsible for the exploration of the adjacencies along

I

each row. For each BLACK or WHITE node at level L that par-

ticipates in a row, OUTPUTRUN outputs a run of length 2L of

the appropriate color (e.g., a BLACK run of length 2 for node

A and row 1 of Figure Ib). OUTPUTENDOFROW outputs a separator

symbol to mark the end of the row.

FINDNEIGHBOR locates the smallest neighboring node of

greater or equal size along a specified side. If the node is

on the edge of the image, and no neighbor exists in the direc-

tion searched, then NULL is returned. This signals that either

processing of a row is finished (e.g., the eastern neighbor of

node E in Figure ib) or that the raster output procedure is

finished (e.g., the southern neighbor of node y in Figure lb).

If the neighboring node does exist, then a pointer to that

node is returned. If it is a GRAY node (e.g., the eastern

neighbor of node A in Figure lb), then procedure FIND ADJACENT

is used to find the adjacent BLACK or WHITE node which inter-

sects the row currently being processed (e.g., the eastern

neighbor of node A in Figure lb is B for the first row and F

for the second row). Note that FIND ADJACENT can also be in-

voked in the vertical direction. In such a case, we always

seek the NW-most node of the adjacent nodes in the southern

direction (e.g., node H is the NW-most node of the southern

neighbors of node A in Figure lb).

As an example of the application of the algorithm, con-

sider the image given in Figure la. Figure lb is the cor-

responding block decomposition and Figure lc is the quadtree

representation. Nodes Ri correspond to non-terminal nodes.

The terminal nodes in Figure lb have been labeled in the order

in which they were visited for the first time. The result of

the algorithm is the string W332, W242, W242, W17, W17, W17,

W314, W8 where the comma serves as a separator symbol denoting

the end of a row. The term W332 indicates that the first run

is of length 3 and corresponds to WHITE, the second run is of

length 3 and corresponds to BLACK, and the third run is of

length 2 and corresponds to WHITE. When outputting the first

row we start at node R0 and then successively visit nodes Rl,A,

Rl,R5,B,R5,C,R5,Rl,R0,R2,D,R2,E,R2,R. For the second row

we start at node A and successively visit nodes Rl,R5,F,R5,

G,R5,R1,RO,R2,D,R2,E,R2,R0. For the third row we must first

get to node H--i.e., visit nodes R1 and R6. The third row is

output by successively visiting nodes R6,I,R6,Rl,J,R1,R0,

R2,K,R2,R7,L,R7,M,R7,R2,R%. For the fourth row we get to

node N by visiting node R6 and we output the row by visiting

nodes R6,O,R6,Rl,J,Rl,R0,R2,K,R2,R7,P,R7,Q,R7,R2,R. For the

remainder of the image we successively visit nodes R6,Rl,R0,

R3,R8,R,R8,S,R8,R3,T,R3,R0,R4,U,R4,V,R4,R0,R8,W,R8,X,R8,R3,

T,R3,R0,R4,U,R4,V,R4,R0,R8,R3,Y,R3,R9,Z,R9,AA,R9,R3,R0,R4,

BB,R4,CC,R4,R0,R3,R9,DD,R9,EE,R9,R3,RO,R4,BB,R4,CC,R4,R0,R3,R0.

In total 136 nodes have been visited. Note that in our dis-

cussion we assume no difference in the amount of work performed

when visiting a node and when outputting a run.

procedure RASTEROUTPUT (P, LEVEL);

/* output a raster representation of the 2tLEVEL by 2tLEVEL

image corresponding to the quadtree rooted at node P *
begin

node P,Q;

integer LASTROW, LEVEL, Row;

while not NULL (SON (P,.'NW)) do

begin /* find NW-most block *

LEVEL-LEVEL- 1;

P-SON (P1 NW');

end;

LASTROW-0;

do

begin

for ROW-LASTROW+l step 1 until LASTROW+2tLEVEL

do QUTROW(PROW,LEVEL);

LASTROW*-LASTROW+2t+LEVEL;

FINDNEIGHBOR(P, 'S',Q,LEVEL);

if GRAY(Q) then FINDADJACENT(Q,0,LEVEL);

P4-Q;

end

until NTJLL(P);

end;

procedure OUTROW (P, ROW, L);

/* output a raster corresponding to row RUN starting with node

P at level L *

begin

node P,Q;

integer L,ROW;

do

begin

OUTPUTRUN(NODETYPE(Q) ,L);

FINDNEIGHBOR(Q,'E',P,L);

if GRAY(P) then FINDADJACENT(P,ROW,L);

end

until NULL(P);

OUTPUTENDOFROW 0;

end;

procedure FINDNEIGHBOR(PS,Q,L);

/* given node P, return in Q the node which is adjacent to

side S of node P. Q is at level L in the tree ~

begin

node P;

reference node Q;

side S;

reference integer L;

L4-L+l;

if not NULL(FATHER(P)) and ADJ(S,SONTYPE(P)) then

/* find a comimon ancestor *

FINDNEIGHBOR(FATHER(P) ,S,Q,L)

else Q-FATHER(P);

/* follow reflected path to locate the neighbor *

if not NULL(Q) and GRAY(Q) then

begin

Q--SON(Q,REFLECT(S,SONTYPE(P)));

end;-l

eend;

procedure FIND ADJACENT(P,POS,L);

/* given GRAY node P, find a terminal node that contains row

(column) POS and is an extreme western (northern) son of P.

P and L will contain the extreme node and its level respect-

ively. FINDADJACENT can be invoked in the horizontal direc-

tion for any row value; however, in the vertical direction

it is only invoked for column 0. In the latter case, the

extreme NW son is sought */

begin

reference node P;

integer POS,BASE;

reference integer L;

BASE-POS-POS mod 2tL;

do

begin

L-L-1;

if BASE+2tL POS then P4-SON(P,'NW')

/* horizontal or vertical extreme */

else

BASE-BASE+2tL;

P-SON(P,'SW') /* horizontal extreme */

end;

end

until not GRAY(P);

end;

71

4. Analysis

The running time of the quadtree-to-raster conversion

algorithm is measured by the number of nodes that are visited.

Thus we only need to analyze the amount of time spent by

procedures FIND NEIGHBOR and FIND ADJACENT. It is clear that

the number of horizontal adjacencies that are explored is equal

to the sum of the heights of the blocks comprising the image.

This is true because each block will be visited once for each

row in which it is a member.

Our analysis first assumes a simpler algorithm than the

one given in Section 3. The difference is that we do not use

FINDNEIGHBOR in the vertical direction. Instead, we traverse

each row by starting at the root of the tree (e.g., in Figure 1,

once the first row has been processed, we return to the root

of the tree, RO, relocate node A and process the second row

(i.e., revisit nodes Rl and A), .hen return to R0 and locate

node H,...). This will simplify the analysis although we will

also show that our original algorithm at times will yield a

superior result. Assume that the image is a 2n by 2n array

of pixels. If the image is a complete quadtree, i.e., all

blocks in the image are at level 0, then we have the following

lemma:

Lemma 1: In a complete quadtree, the number of nodes visited

by the modified quadtree-to-raster algorithm is bounded by

4 times the number of blocks in the image (more precisely,

it is equal to four times the difference between the area and

the diameter of the image).

Proof: Starting at the root node of the quadtree, for each

row in a 2 nby 2 nimage, n nodes are visited when locating

the node corresponding to the leftmost block. Once this is

done, FIND NEIGHBOR is invoked 2n times to find neighbors in

the eastern direction. 20 of the nodes corresponding to

blocks in the row have their nearest common ancestor at level
21 2i

n, 2 at level n-l,...,2 at level n-i, and 2n-l at level 1.

Once the nearest common ancestor has been found, a path of

equal length must be traversed to locate the adjacent neigh-

bors. In addition, the node corresponding to the rightmost

block in each row has no eastern neighbor. This is detected

by attempting to locate a non-existent common ancestor--a

process which traverses a path of length n (i.e., to the root

of the quadtree and including it). Since there are 2n rows,

the number of rows visited is:

n n n-1 n n+ n i
2 (n+2 Zi2 + n) =2 (2n+2 Z

i=l i=l 2'

S2n (2n+ 2n+l
(2- a-)

= 2n (2n+2(2n+l
- (n+2)))

= 2n+l. n+2 2n+2_2n+l.n-2
n+ 2

= 22n+ 2 2n+2

However, there are 22n blocks in the image. Thus the number

of nodes that have been visited is bounded by 4 times the

number of blocks in the image.

Q.E.D.

We are now ready to prove the main result.

Theorem 1: For any image, the number of nodes visited by

the modified quadtree-to-raster algorithm is bounded by 4

times the sum of the heights of the blocks in the image.

Proof: By Lemma 1 the theorem is true for a complete quadtree.

We shall use induction on the size of the blocks to show the

result for any quadtree.

Consider a 2 by 2 pixel block in the complete quadtree

and assume that the four blocks corresponding to the pixels

have been merged to yield one block. Since we are processing

the image in a row by row manner, the only adjacencies that

are eliminated by the merge are the horizontal ones between

the blocks being merged (e.g., between 19 and 20 and 27 and 28

in Figure la). This means that four less nodes will be visited

by our algorithm. In addition, the node corresponding to the

merged block (e.g., node J for the blocks corresponding to

19, 20, 27, and 28 in Figure la and lb) is 1 node closer to

its horizontal neighbors to the left and right (e.g., blocks

18, 26, 21, and 29 in Figure la). Recall that in general,

the left and right edges of the image are also neighbors.

Thus we find that 4+1+1+1+18 nodes less will be visited.

However, the size of the blocks in the image has decreased

by 2 (initially there were 4 blocks of size 1 and now there

is one block of size 2) and our theorem holds.

More generally, consider a 2S+l by 2S+1 block--i.e., we

are merging four 2S by 2S blocks. Once again, since we are

processing the image in a row by row manner, the only adja-

cencies that are eliminated by the merge are the horizontal

ones between the blocks being merged. Since the blocks are

of size 2S , 2S+l adjacencies are eliminated. Moreover, each

block of size 2S is at a distance of 2 from its horizontal

neighbor with whom it is being merged. Thus the elimination

of 2S+l adjacencies results in 2 -2S+l less nodes being visited

by the algorithm. In addition, the node corresponding to the

merged block is 1 node closer to its horizontal neighbors to

the left and right. However, there are 2S+1 neighbors in each

direction. Thus the total number of nodes that will be visited

has decreased by 4-2S+I . However, the size of the blocks in

the image has decreased by 2S+l (initially there were 4 blocks

of size 2S and now there is one block of size 2S+ l) and our

theorem holds.

Q.E.D.

The construction used in the proof of Theorem 1 is worthy

of further attention. It can be used in conjunction with the

result of Lemma 1 to compute exactly how many nodes will be

visited for any image given the number of blocks comprising

it and their respective sizes. Thus different images will

require the same number of node visits. For example, the

image in Figure 3 requires the same number of node visits as

the image in Figure 1 when the modified algorithm is applied.

Intuitively, this is not surprising since the modified algo-

rithm does process the rows independently of each other.

We have the following theorem:

n n iTheorem 2: Given a 2n by 2n image with bi blocks of size 2,

the number of nodes visited by the modified quadtree-to-raster

algorithm is:

22n+2 - 2n+2 - n 2i+2 i+22 2 E bi (2 2iml

Proof: From the proof of Lena 1 we have that traversing a

complete quadtree of size 2i requires 22i+2-2 i+ nodes to be

visited. This represents a traversal starting and terminating

at a common ancestor. Since the 2i by 2 array of pixels has

been replaced by one block, 22i+2- 2i+2 less nodes will be

visited for a block of size 2i. Recall that if the array

contains 2 n by 2n blocks of size 1, then 22n+2- 2n+2 nodes will
be visited. Subtracting the contribution of bi blocks of size

2i yields the desired result.

Q.E.D.

At this point we return to our original algorithm (i.e.,

the one presented in Section 3) and compare it with the mod-

ified algorithm. Recall that the only difference between the

two algorithms was in the way they handled the vertical tran-

j sitions between rows. For a complete quadtree for a 2n by 2n

image, the modified algorithm required n-2n node visits to

locate the first block in each row whereas the original algo-

rithm required a number of nodes to be visited equal to that

obtained by Lemma 1 for a single row--i.e., 2n+2-4 . Thus the

original algorithm requires 22n+2-2n+2-n.-n2n+2n+2- 4 =22n+2-n-2n-4

node visits. We have the following results:

Theorem 3: Given a 2n by 2n image with vi blocks of size 2i

in the first column, the number of nodes visited by the orig-

inal quadtree-to-raster algorithm in locating the nodes cor-

responding to the first blocks in each column is
n+2 - nv (2i+2-4)

i=l

Proof: From Lemma 1 we have that traversing a row of size

i i i i22 pixels in a 2 by 2 image requires 2i+2- 4 nodes to be

visited. This represents a traversal starting and terminating

at a common ancestor. Since the 2i pixels have been replaced

i+2by one block, 2 -4 fewer nodes will be visited for a block

inof size 2. Recall that if the row contains 2 blocks of size

1, then 2n+2_ 4 nodes will be visited. Subtracting the contri-

bution of vi blocks of size 2i yields the desired result.

Q.E.D.

L

Theorem 4: Given a 2 by 2 image with v. blocks of size 2i
1

in the first column, the number of nodes visited by the

modified quadtree-to-raster algorithm in locating the nodes

corresponding to the first blocks in each column is

n2n n - E Vi *i . 2
i

i=l1
Proof: For each row in a block of size 2 the leftmost node

is i nodes closer to the root of the quadtree than it would

be were it in a block of size 1. Since there are vi such blocks,

the result follows.

Q.E.D.

Theorems 3 and 4 enable us to compare the original and

modified algorithms. We find that for blocks of size 2 where

i4, the ratio -2 is greater than 1. Thus neither algo-
2i+2-4

rithm is always superior to the other one. However, as n gets

large and a majority of the nodes appear at low levels in the

tree, it would appear that the original algorithm is superior.

Note that for the example in Figure 1 both the original and

modified algorithms will visit the same number of nodes (i.e.,

136).

We may also obtain a result analogous to Theorem 2 for the

original algorithm.

Theorem 5: Given a 2n by 2n image with bi blocks of size 2i, and

v. blocks of size 21 in the first column, the number of nodes1

visited by the original quadtree-to-raster algorithm is:
2n+n 2i+2 i+2
2 2 n-2n4 - bi (2 2 + E v ((i-4)2 +4)

Proof: Subtract the result of Theorem 4 from the sum of

the results of Theorems 2 and 3.

Q.E.D.

Thus we see that the original algorithm also has a degree

of configuration independence. The difference between it

and the modified algorithm is that in its case the first

columns must have the same number of blocks of the different

sizes. Thus Figures 1 and 3 do not result in the same number

of nodes being visited whereas Figures 1 and 4 do.

5. Concluding Remarks

An algorithm has been presented for converting a quadtree

representation of a binary image to a raster representation

of the image. The algorithm's running time was shown to be

proportional to the sum of the heights of the blocks comprising

the image. In other words, the amount of work required is

directly proportional to the complexity of the image--i.e.,

two different images will require the same amount of work if

they have the same number of blocks of each size. This is

not surprising when we recall the row by row nature of our

algorithm. Note that the complexity of the algorithm is

directly proportional to the resolution of the image--i.e.,

as the resolution is increased by a factor of 2, so does the

sum of the heights of the blocks comprising the image. Also

observe that the order of the algorithm's running time ranges

between the diameter of the image (i.e., when the image consists

of one node) and the area of the image (i.e., when all of the

blocks in the image are of unit pixel size).

The analysis of the algorithm was facilitated by consider-

ing a somewhat simplified version which nevertheless was shown

to exhibit superior behavior for some images. The simplified

version rendered possible the proof of Theorem 1. The original

algorithm has the same upper bound of 22n
+2 nodes being visited;

however, the result of Theorem 1 is not as easily derivable.

The problem with the original algorithm is that the number

of nodes visited is sometimes only reduced by 3 rather than

by 4 when blocks in the first column are merged.

The algorithm is essentially a bottom-up tree traversal.

It can be contrasted with two other approaches. One method

traverses the tree in a top down manner looking for extreme

nodes (e.g., in the northern direction) and works its way to

the bottom of the image. An alternative approach avoids the

work required by FINDNEIGHBOR and FIND ADJACENT in locating

neighboring nodes for each row in the image by linking such

nodes. This is similar to the concept of roping (Hunter].

The disadvantage of such a technique is the amount of extra

space required to store the links. In addition, as we have

shown, the cost of our neighbor finding techniques is not very

high (i.e., four nodes must be visited per adjacency rather

than l as is the case when the nodes are linked).

6. References

[DRSI C. R. Dyer, A. Rosenfeld, and H. Samet, Region
representation: boundary codes from quadtrees.
Computer Science TR-732, University of Maryland,
College Park, Maryland, February 1979.

[Hunter] G. M. Hunter, Efficient computation and data struc-
tures for graphics, Ph.D. dissertation, Department
of Electrical Engineering and Computer Science,
Princeton University, Princeton, New Jersey, 1978.

[Klinger] A. Klinger and C. R. Dyer, Experiments in picture
representation using regular decomposition, Computer
Graphics and Image Processing 5, 1976, 68-105.

[Naur] P. Naur (Ed.), Revised report on the algorithmic
language ALGOL 60, Communications of the ACM 3, 1960,
299-314.

(Sametl] H. Samet, Region representation: quadtrees from
boundary codes, Computer Science TR-741, University
of Maryland, College Park, Maryland, March 1979.

(Samet2] H. Samet, Computing perimeters of images represented
by quadtrees, Computer Science TR-755, University of
Maryland, College Park, Maryland, April 1979.

[Samet3] H. Samet, Connected component labeling using quad-
trees, Computer Science TR-756, University of Maryland,
College Park, Maryland, April 1979.

[Samet4] H. Samet, Region representation: raster-to-quadtree
conversion, Computer Science TR-766, University of
Maryland, College Park, Maryland, May 1979.

[Samet5] H. Samet, Region representation: quadtrees from binary
arrays, Computer Science TR-767, University of Maryland,
College Park, Maryland, May 1979.

12_3, 7 A B
9 10 M1 16i&

25 23241W

33 R3

*41 3
49551 2535455561

a. Sample image b. Block decornsosition of the

RO

B C FPG H I N 0 L N P Q R S W X Z AADEE

c. Quadtree representation of the blocks in (b).

:Figure 1. An image, its maximal blocks and the corresponding quadtree.
Blocks in the image are shaded.

N

W E

S
Figure 2. Relationship between a block's four quadrants and its boundaries.

Ir; "77-""

A/7

_ _ _ _ 7,,-

a. ~ ~ ~ 7 Sampl img-.Boc-eopsiino h

imag in (a).

Fiur 3. 7n 7mg n t aia lck hc eurstesm

a. Sample image b. Block decompsition of the
image in (a).

Figure . An image and its maximal blocks which requires the same
number of nodes to be visited by the oiiedl quadtree-to-raster
algorithm as does Figure 1.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION N 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

REGION REPRESENTATION: QUADTREE-TO- Technical
RASTER CONVERSION

6. PERFORMINa6RG. REPORT NUMBER

TR-768
7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER(*)

/
Hanan Samet DAAG-53-76C-0138

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK/ AREA & WORK UNIT NUMBERSComputer Science Department
University of Maryland
College Park, MD 20742

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Night Vision Laboratory June 1979
Fort Belvoir, VA 22060 13. NUMBER OF PAGES

27
14. MONITORING AGENCY NAME & ADDRESS(I dillrent from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

ISa. DECL ASSI FICATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If different from Report)

16. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse side if necessary end Identify by block nuber)

Pattern recognition
Image processing
Computer graphics
Quadtrees

0. ABSTRACT (Continue an revere, aide If necesary and Identify by block number)

An algorithm is presented for obtaining a raster representation for
an image given its quadtree. For each raster row the algorithm
visits the appropriate nodes in the quadtree and, for each such node,
outputs a run of length equal to the width of the corresponding
block. Each block's node is visited as many times as it is high.
Analysis of the algorithm reveals that its execution time is propor-
tional to the sum of the heights of the blocks comprising the image. 7
The total number of terminal and non-terminal nodes visited by the-

DD I ,[° 1473 EDITION OF I NOV65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Wn Date Entered)

kka

Unclassified

-6.1TY Ct.ASf:rICATION OF THIS PAGE(t7,en P,-:& Zpfted)

Kalgorithm is also computed and shown to be a function of the
num~ber of maximal black and white blocks in the image. This mean~
that the algorithm's execution time is directly proportional to
the complexity of theimg

Unclassified
99CURIT'Y CLASSIFICATION O7 TNgS PA".(WPt 00 -)e. nfvw*vl

